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SUMMARY

The dispersion characteristics of a tunnel ladder circuit in a ridged wave guide were

experimentally measured and determined by computer simulation using the electromagnetic code

MAFIA. To qualitatively estimate interaction impedances, resonance frequency shifts due to a

perturbing dielectric rod along the axis were also measured indicating the axial electric field strength.

A theoretical modeling of the electric and magnetic fields in the tunnel area was also done.

INTRODUCTION

Of a variety of structures considered in recent years for possible applications at millimeter-

wave frequencies, one that has received attention is the thin ladder circuit which was presented

conceptually by Karp in 1955 [1] and its modification discussed by him in 1960 [2]. Similar parallel
line and ladder structures were analyzed by Pierce [3] and Butcher [4] without space harmonics and by

Froom et al. [5] and Kosmahl and O'Malley [6] using space harmonics. The predicted dispersion

characteristics were in close agreement in all, however the values of interaction impedance varied. In

their presentation, Kosmahl and O'Malley suggested that high beam operating voltages in the range of

tens of kilovolts would make possible a non-space harmonic operation of a forward-wave ladder based

amplifier at millimeter wavelengths. They also suggested that the gain rate would further benefit from

the high interaction impedance associated with the ladder. Kosmahl and Palmer conducted an analysis
of the idealized or modified Karp circuit referred to as the TunneLadder [7]. Their results pointed out

to the suitability of this structure as a high impedance, narrow bandwidth circuit of about 1% that is

voltage tunable over a frequency range of 5% and has excellent heat handling capability.

Figure 1 - Idealized circular tunnel ladder structure.
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A simplified theoretical model of the TunneLadder structure was used by Kosmahl to predict

the dispersion characteristics and interaction impedances (Figure 1). This model uses a circular wire

loop to represent the hexagonal cross section of the actual tunnel region. The electric and magnetic

fields are represented in cylindrical geometry inside the loop region and by Cartesian geometry outside

the region. The boundary conditions are then applied at the various regions.

The actual TunneLadder is a novel, high impedance structure that was introduced by Karp

and does not lend itself to a closed form analysis. The idealized structure, although quite simplified, is
more amenable to closed form solution. With the idealized tunnel cross-sectional area equal to the

actual cross-sectional area, the model predicts at least qualitatively the dispersion characteristics of

both the symmetric and antisymmetric ladder modes.

A 29 GHz TWT utilizing the TunneLadder structure was fabricated and tested by Varian

under a NASA contract [8,9]. The test results confirmed the potential applicability of the ladder-based
structures for use in millimeter-wave traveling-wave tubes.

THEORETICAL EVALUATION OF THE ELLIPTICAL TUNNEL

A realistic approach would be to approximate the actual hexagonal tunnel cross section as an

ellipse supported by dielectric slabs (Figure 2).

Figure 2 - Idealized elliptical tunnel ladder structure supported by dielectric slabs.

For this analytical effort, elliptic cylinder coordinates would be the preferred choice for field

representation. The result would be a model to closely represent the electric and magnetic fields inside

the tunnel region.

Electromagnetic waves propagating in elliptical metal pipes have been investigated as early as

1938 [10]. Since then several papers dealing with wave propagation [11], computation of critical

frequencies [12] and cutoff wavelengths [13,14,15], and attenuation characteristics for elliptical [16,17]

and dielectric-tube wave guides [18] have been published.



Cartesian coordinates in three dimensions are related to elliptic cylindrical coordinates by

z = d cos(0) cosh(/_), y = d sin(0) sinh(#), and z = z where d is half the interfoeal distance. The z-axis

is chosen to be along the direction of propagation with the axial propagation constant designated as #.

Propagatin_ solutions in the z-direction are of the form e- j#z. The remaining transverse Helmholtz

equation V_¢ + k2T¢ = 0 where k2T= (w/c) 2 -- #2 in the two-dimensional elliptic coordinate system is

°2¢ °2¢ d2k2T[COsh2(u)-cos2(0)]¢ 0.
0U 2 _ + =

(1)

Assuming ¢ = M(p) O(0), the transverse Helmholtz equation separates into two equations with

coupled eigenvalues, h = kTd and b:

and
d2M/d# 2 + [h 2 cosh2(p) - b]M = 0

d2O/d20 + [b - h 2 cos2(0)]0 = 0.

(2)

(3)

Solutions for O are the Mathieu functions Sern and SUm while the corresponding radial

solutions for M are the modified Mathieu functions of the first kind, Je m and Jorn, and of the second

kind, Nern and Norn, where rn refers to the particular order of the function [19]. The functions Sem(h ,

cos 0) are even in 0 with eigenvalues b designated as bern(h ) while the functions Sum(h, cos d) are odd

in 0 with eigenvalues b designated as born(h). For a given h, the eigenvalues are ordered such that

be o < bo I < beI <... < born < bern < born + l ....

Inside the elliptical tunnel the continuity of ¢ in value and slope at p = 0 prohibits

corresponding radial solutions of the second kind, Nern and Nora. Therefore when the solution for O is

Sern(h, cos 0) then the corresponding radial solution for M becomes Jern(h, cosh p). Likewise, when

the solution for O is Sum(h, cos O) then the corresponding radial solution for M becomes Jorn(h, cosh

p). Also on the metallic ellipse boundary at p = Po, the z-component of the electric field must be zero.

There exist transverse magnetic (TM) and transverse electric (TE) modes in an elliptical wave

guide not to mention hybrid modes. The modes are designated TM, or TE, where the index i is
lrnn irnr_

either c (standing for cosine or even) or s (standing for sine or odd). The m is an integer representative
of the order, and n represents the nth parametric zero of the Mathieu function. For tube devices only

the TM modes are useful. The field configuration for the lowest transverse magnetic (TM) mode in an

elliptical wave guide is the TMco 1 mode; the TMso 1 does not exist [20]. The fields for this mode are
well known and given in terms of the zero-order, even Mathieu functions and their derivatives.

'_ Je'o(h, cosh p) Seo(h, O) exp{j(wt- #eolz)} (4)E_, = Ikc c01 J C°l cos

- i# o, Seo(h,EO = I Col
Ikc /c01

cosh U) Se'o(h, cos 0) exp{j(wt-#eolz)} (5)

E, = Col Seo(h, cosh p) Seo(h, cos 0) exp{j(wt- #colz)}

Seo(h,

HO = --f--lk¢_o1] C°I Ye'°(h'

cosh U) Se'o(h, cos 0) exp{j(wt- #_0az)}

cosh p) Seo(h, cos 0) exp{j(wt-flcolz)}

(T)

(8)

H, = 0 (9)



Here /-" d_C°sh(2/A)_ - cOs(20), ]% cOl is the transverse cutoff wave number, the cutoff axial

propagation constant is 3c col = q(w2/c2) -kc 2 cOl, and Col is a normalization coefficient.

The power flow through the tunnel region can be found from

P0 27r

0 0

(10)

To completely specify the fields for the TMco I mode, the transverse cutoff wave number k c c01

must be found. Since this is related to the eigenvalue h, we must determine h such that E z is zero at

the ellipse boundary p -- Po"

Since the eigenvalues h and b depend on each other, they must be found simultaneously.
Solution of the eigenvalues h and b involves the evaluation of continued fractions [21]. For m an

integer, the eigenvalues are related through

h2[ al a-l] (11)b=m2+ T 2 + _oo+--R_o

where the a coefficientsare to be determined. The ratiosal/ao and a_ 1/% are given by the continued

fractions

% - h2 (12)
an - 1 -- 16(m/2 + n) 2 + 2h 2 - 46 + h2(an + 1/an)

and

an -- h2

an + I 16(m/2 + n) 2 + 2h 2 - 4b + h2(an _ l/an)"
(13)

For the lowest order mode, m = 0, the ratio alia o = a_ 1/ao.

an+ 1 _ -h 2 _h 2
For large positive n, _ 16(m/2 + n) 2 and for large negative n, an - 1an 16(m/2 + n) 2"

Substituting these limiting values in equations (12) and (13), the ratios al/a o and a_ 1/% are

found and the eigenvalue relation in continued fraction form becomes

2b - h 2 - h4 (14)
h 4

16(1)2+2h 2-4b
16(2) 2 + 2h 2 -4b - h4

16(3)2+2h 2 -4b-...

The condition that E z = 0 at p = P0 is now needed to finally solve for both h and b. This is equivalent

to finding h which satisfies

Jeo(h, cosh P0) = O. (15)

The Mathieu function Jeo(h, cosh P0) can be calculated as a summation of Bessel functions

oo

Seo(h , cosh Po) = _ Z ( -- 1)nB2n J2n(h cosh P0)
n_O

where

B2n = an

a n

(16)

(17)



The procedure then to solve for the proper eigenvalues, given the particular tunnel dimensions,

is to pick a value for h and solve for b using equation (14). Using h and b one can find the coefficients

an to determine the B2, coefficients. After solving equation (15) for h using equation (16), the

procedure is repeated. Once the eigenvalues h and b are found then values for k e col and /_e cOl are
calculated. With this the unnormalized fields for the elliptical tunnel region are determined from

equation (4) through (9).

A BASIC program has been written to calculate the eigenvalue b for a particular eigenvalue h.

The actual solution of both eigenvalues simultaneously given a set of tunnel dimensions was achieved

using the program MATHCAD. To determine the dispersion characteristics of the tunnel ladder

structure the fields exterior to the tunnel region must be found and only by matching admittances at

the elliptical boundary can a closed form dispersion relation be realized. Since the region exterior lends

itself to Cartesian coordinates, only a crude match can be achieved. A relatively simple closed form

solution of such a complicated problem is not warranted since results can only be qualitative in nature.

However, if the power and dispersion characteristics of the particular tunnel ladder can be found by

other means, the use of the E z field for calculation of interaction impedance may prove useful.

EXPERIMENTAL EVALUATION

For the experimental determination of the dispersion characteristics a 29 GHz tunnel ladder

structure similar to the Varian structure has been fabricated (Figure 3).

Figure 3 - Cross-section of the experimental tunnel ladder structure.

In fact, two copper ladders manufactured by Varian for contract number NAS3-23347 each

having a slight depression in the middle of the rungs were placed together to form the tunnel ladder.

The tunnel was hexagonal in shape with a width of 0.0386 inch and a height of 0.0252 inch. Ladder

and structure dimensions were measured using an optical microscope. Each ladder consisted of 101

rungs and was 0.0025 inch thick with 0.0066 inch wide rungs and 0.006 inch wide by 0.1105 inch long

slot spaces.

A ridged wave guide was fabricated using electrical discharge machining (EDM) from copper

block in two symmetrical halves. The width and height of the entire cavity of the ridged wave guide

were 0.212 inch and 0.098 inch, respectively. The cross-section dimension of the ridges was

approximately 0.0575 inch wide by 0.0214 inch high. Two amorphous boron nitride (% = 3.973)

dielectric slabs, 0.0575 inch wide by 0.0125 inch high and glued to both the upper and lower ridges,

were used to support both ladders. The ladders were positioned between the two halves of the ridged

wave guide such that the rungs on both ladders were aligned. Screws were used to finally secure both

halves of the ridged wave guide. A 17-period length of the test structure was cut using wire EDM.
Minor dimensional inconsistencies in the structure are apparent and are due to the specific machining

processes and fabrication methods.



Sincethe anticipated high frequency cutoff was near 30 GHz, the tunnel ladder structure was

initially tested using an HP 8510C network analyzer in WR-28 wave guide. The signal was coupled

through small holes drilled into the wide faces of the input and output wave guides at the ends of the
tunnel ladder structure. The attenuation of the signal through the coupling holes was too great,

however, and no resonances were observed. Any attempt to enlarge the holes would diminish the

shorting effect at the ends of the structure.

It was decided to use another HP 8510C network analyzer which can operate in coaxialcable

up to 40 GHz. A testi'Lxturewas machined out of brass in which K-connectors were installedin both

halves such that the signalcoupling was achieved from coaxialprobes through small holes drilledin

each halfof the fixture. Grooves to fitthe length and width ofthe entirestructurewere milledon the

insidesof each half of the fixtureto centerthe tunnel horizontallyand verticallywith the probes. An

alignment pin connected both halves (Figure4).

Figu_ 4 - Experimental tunnel ladder structure and test fixture.

The assembled 17-period tunnel ladder structure and test fixture were connected to the network

analyzer using 2.4 mm coaxial cable (Figure 5).

Figure 5 - Assembled experimental tunnel ladder structure ud test fixture.

Measurements from 10 GHz to 35 GHz of the resonance frequencies for the structure were

taken with (Figure 6) and without (Figure 7) an alumina rod ground to a 0.025 inch diameter and

inserted in the tunnel region.



Six resonances were observed for both sets of measurements. The K-connectors will exhibit a

resonance just above 30 GHz, but this offered no problem since transmission through the structure was

negligible near this frequency.
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Figure 6 - Transmission measurement of the tunnel ladder structure without the dielectric rod.
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Figure 7 - Transmimion measurement of the tunnel ladder structure with the dielectric rod.



COMPUTATIONALEVALUATION

The tunnel ladder structure was also modeled using the MAFIA code. The MAFIA code

allows the generation of elliptical cylinders very easily. One period of the actual hexagonal tunnel

ladder was therefore modeled as an elliptical tunnel ladder, having the same cross-sectional area with

the same ladder thickness. The height and width of the hexagonal tunnel were used to find the

eccentricity e of the ellipse with semimajor axis ra and semiminor axis r b.

_(width )2 _ (height)2 qra 2 - rb 2
= e = (18)

height ra

The semimajor and semiminor axes were then found simultaneously from the tunnel area using

rrarb=Area (19)

The dimensions of the simulated ridged wave guide and dielectric supports were chosen as close
to the actual dimensions as possible such that bilateral symmetry was preserved vertically and

horizontally with respect to the center of the tunnel.

A simulated dielectric rod was given the same dimensions as the actual alumina rod and was
located in the elliptical tunnel. The shape of the simulated rod cross-section is not quite circular. This

is due to the resolution of the mesh. A finer resolution would improve the shape, however the

computer time involved would dramatically increase. The mesh for one period of the structure was

chosen to be a uniform 85 x 40 x 5 (Figure 8).

||till |||_..[.|l_
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Figure 8 - MAFIA computer mesh simulation of the tunnel ladder structure.

Computer runs to generate the mesh, set up the eigenvalue matrix, and solve for the

eigenvalues (frequency resonances) for the two cases, with and without the dielectric rod, were

completed. In each case for each run the phase shift per period was adjusted from (1/17)-180" to

(6/17). 180" to coincide with the experimentally measured frequency resonances.

COMPARISON OF RESULTS

Frequency resonance values generated by the MAFIA code were close to experimentally
measured results. The simulated tunnel ladder structure was then modified to reflect the dimensional

inconsistencies that were present in the actual structure. The code was run again and frequency values

were even closer to the experimental results (Figure 9).
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Figure 9 - Experimental and computer-generated tunnel ladder dispersion characteristics.

The frequency shifts for both the experimentally measured resonances and the computer-

generated resonances also were very close and increased with frequency. This is indicative of a

structure with good interaction impedance for a device where a nominal electron beam voltage may be

used. The resonance frequencies and shifts in frequencies found using the MAFIA code were slightly

greater in value than the experimental results. Any discrepancies in results can be attributed to the
deviation of the actual structure dimensions from the computer model, the computer mesh resolution,

the dielectric constants for boron nitride and alumina, and the variation in the dielectric cross sections

along the length of the structure. A much finer resolution would give a better description of the actual
structure but this is really not needed considering the closeness of the results. Taking into account the

actual variation and non-uniformity of the experimental tunnel ladder structure dimensions

demonstrated the feasibility of the MAFIA code for use in the design of these structures.

CONCLUDING REMARKS

The abilityto perform successfulmeasurements on the actual tunnel ladder structureat the

operating frequency is a major contribution towards the characterizationand analysis of these

particularslow-wave structures.Previously,scaledversionsof the structurewere constructedfor cold

testing to determine their suitabilityto operate successfullyat higher frequencies. Also with the

confidence gained with respect to the computer-generated dispersioncharacteristics,the abilityto

predictstructurecharacteristicswithout the need to firstfabricatethe structurewas demonstrated. It

is much easier,faster,more versatile,and eventually cost effectiveto model the structure using

computer-aided design software codes than to fabricate,test,and evaluate a prospectivestructure

experimentally to initiallydetermine its potential. Furthermore, variationsin the geometry of the

structureto achieve the desiredcharacteristicscan be incorporatedeasilyand thereforehighly efficient

structurescan be designed without prohibitivecostsof trialfabricationand testing.

It remains for future work to expand the theoretical model of the tunnel ladder structure or

develop other models to predict with accuracy the dispersion characteristics. Improved fabrication
methods to reduce structure losses are definitely needed. Although the exact theoretical description of

many novel structures is extremely difficult, preliminary investigations should be conducted to at least

approximately characterize the structure in question.



With the recent availability of reliable electromagnetic computer programs capable of solving

Maxwell's equations in three dimension, a wide variety of periodic slow-wave structures can be designed

and evaluated easily and without exorbitant cost. The various types of structures that can be

investigated are limited solely to the imagination of the designer.
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APPENDIXA

Mathcadprogramto find theMathieufunctioneigenvaluesh and b for the elliptical tunnel region.

Read frequency data file

frequencies f :=M <° >. 109

number of points N := length(f)

axial wavenumbers i := l .. N

M ::READPRN(tlexp)

_o:=2.x'f

N=6

x i

L 17

speedof Ught c :=2.99792.108

pmmltUvlty 8 :=8.854.I0-12

period L :=.0126-.0254

17 periods of the structure

Define elliptical parameters.

aemimajo¢axis semimajor :: .0386..0127 _miminor uI,

Calculate the radial elliptical coordinate for the ellipse.

l.ln(Semimaj°r + semimm"°r / _tl :0.78025
_1 :=2 \semimajor- semiminorl

semiminor:=.0252..O127

Calculate the eccentricity of the ellipse.

_semi_ajo 2 - scmiminor 2
ecc: ecc = 0.75749

semimajor

Calculate the interfocal distance.

d : scmimajor.ccc d =3.71335.10 -4

Find the eigenvalues h and b using continued fractions for the TMoo 1 mode.

limit := 10 m := 0 se := 2.m so := 2.m + 1

n := limit.. 1 s := se h := 1.9818 b := 1.52368

_h2 h2
prafi°limit+ 1 :: prati°n ::

_h2 h2

rLrati°limittI :: m'ati°n:=

16. --s - limit 16. .s - n + 2.h 2 - 4.b + h2.mmtio.+ 1
,2

Given s2=b - 4.(2 + pratio I + nratiol) b := find(b)

Calculate the Bz. coefficients.

n := 0 .. limit a0 := 1 an+ 1 := prati°n+ l'an

b = 1.52368

%

B2"" :: _ -_" ZB2"n = 1n

n

11



Even solutions of period

s = eve.___nninteger = 2m, allowed values of b = be2m

Scc(_b):= _-'lB2.n.c, os(2.n._)

n

n

]Nec(h,la):= • (-I)n- m-B2.n'Yn(2-n,h'cosh(g))

n

Even solutions of period 2x

s = odd integer = 2m + 1, allowed values of b = be2. , + I

Seo(q_) := _B2.n+ l-cos((2.n + l)-qb)

n

_-_, m'B l.Jn(2.n+ I,h.cosh(t0)Jco(h,t0 := • (-l)n- 2.n+

n

5zNco(h,p.) := (_ n- m• l) .B2.n+ l.Yn(2.n+ I,h'cosh(t0)

n

Odd solutions of period x

s = even integer = 2m, allowed values of b = be2,,,

Soc(dp):= ZB2.n-Sin(2.n-qb)

n

Joe(h,g) := J_-tanh(I.t).E(-1) n- m.(2.n).B2.n.Jn(2"n,h'cosh(tt))

n

E(Noe(h,tt):= .tanh(tt). I)n- m.(2.n)'B2.n.Yn(2'n,h'cosh(tt))

n

Odd solutions of period 2x

s = odd integer = 2m + 1, allowed values of b = be2m + 1

Soo(qb) :: _-":B2.n+ l-sin((2-n + 1)'¢)

n

xJ_(h,g) := .tm_(g)- (- 1) n- m-(2.n + l).B2.n+ l-Jn(2-n ÷ 1 ,h-cx_sh(p.))

n

E(Noo(h,l,t):= .tanh(g)- l)n- m.(2.n+ l)-B2.n+l.Yn(2-n+ l,h.cosh(p.))

n

12



Condition for Ez to be zero on the ellipse.

C-iv_ Jee(h,pl)=O h := fred(h)

l(ttAb):=d._cosh(l.02 - cos(qb)2

Field equations for the TMc01 mode.

Ez0'.+):=Jee(h,.).See(4,)

E l_(i,l.tAb):=_i.d_J_(h,p,).Se_(q_ )

E #(i,l.t,_) := _i.Jcc(h,_).cl ,_x)(_)
d+

h
kl :=-

d

h = 1.9818 b = 1.52368

2

-i - i

Hz:--0

H u.(i,laAb) :: coi_ f¢.Jec(h,l_).dsee(_)
d+

H @(i,_,/_):= mi_ t.c.djee(h,l_).See(_)
d_

Power flow through the elliptical cross section.

i?;0.+Pi::2 (kci)4 ( E _(i'_t'*)'H qb(i'_'q_) + E q_(i'tt'q_)'H _(i'l_'q_)) d_ dp

Interaction impedance

dielectric rod radius

effective rod semimajoraxis

a r = 3.9295" 10 -4

b =2.56537"10 -4
r

rod elliptic coordinate

la r = 0.78025

r := .0125..0254
/

r effective rod senaknnlnoraxis b r :: r.J_l - ecc 2
a r .- [/_

2
-¢CO

f" r fO!-XE z()t,402-1(tt,4))2 d_dp
l.ln[ar+brl OO

i_r:: _ /ar---_r ] ImeracUonlmpedance Zi :=
2-(l_i)2.pi.x .2

Plot of interaction impedance based on power flow through the elliptic tunnel region only.
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APPENDIX B

BASIC program to solve for the Mathleu function eigenvalue b given eigenvahe h and order s.

10 DIM PRATIO(15),NRATIO(15),DPRATIO(15),DNRATIO(15),APLUS(15),AMINUS(15),

BPLUS(15),BMINUS(15)
20 CLS:INPUT "What is the order s";S:INPUT "What is h";H:INPUT "What is the guess for b";B

30 INPUT "What is the number coefficients required"iN

40 REm-Figure a(n)/a(n-1) .....................................................

50 PRATIO(N+I)=-H,H/16/(S/2+N)/(S/2+N)
60 FOR I=N TO 1 STEP -I

70 PRATIO(I)=-H,H/(16,(S/2+I),(S/2+I)+2,H,H-4,B+H,H,PRATIO(I+I))

80 NEXT I

90 APLUS(0)=I:POSASUM=APLUS(0):POSBSUM=0
100 FOR I=1 TO N

110 APLUS(I)=PRATIO(1),APLUS(I- 1)

120 POSASUM=POSASUM+APLUS(1)

130 NEXT I

140 FOR I=0 TO N

150 BPLUS(I)=APLUS(I)/POSASUM

160 POSBSUM=POSBSUM+BPLUS(I)
170 NEXT I

180 REM-Figure a(-n)/a(-n+l) ................................................

190 NRATIO(N+ I)=-H,It/16/(S/2-N)/(S/2-N)
200 FOR I=N TO 1 STEP -1

210 NRATIO(I)=-H,H/(16,(S/2-I),(S/2-I)+2,H,H-4,B+H*H*NRATIO(I+I))
220 NEXT I

230 AMINUS(0)= hNEGASUM=AMINUS(0):NEGBSUM=0
240 FOR I=1 TO N

250 AMINUS(I)=NRATIO(I),AMINUS(I-1)

260 NEGASUM=NEGASUM+AMINUS(I)
270 NEXT I

280 FOR I=0 TO N

290 BMINUS(I)=AMINUS(I)/NEGASUM

300 NEGBSUM=NEGBSUM+BMINUS(I)
310 NEXT I

320 REM-Finding b- ............................................................

330 DPRATIO(N+I)=O
340 FOR I=N TO I STEP -I

350 DPRATIO(1)=PRATIO(1),

(4-H,H,DPRATIO(I+ 1))/(16,(S/2+I),(S/2+I)+2*H*H-4*B+H*H*DPRATIO(I+I))
360 NEXT I

370 F=B-H,tt/4,(2+PRATIO(1)+NRATIO(1))-S*S
380 DF=I-H,H/4,(DPRATIO(1)+DNRATIO(1))

390 BNEW=B-F/DF:IF ABS(BNEW-B)>.00001 THEN B=BNEW/2+B/2:

PRINT "b=";B:GOTO 40

400 PRINT "N","a+=","B+=","a-=","B-="
410 FOR I--0TO N

420 PRINT I,APLUS(I),BPLUS(I),AMINUS(I),BMINUS(I)
430 NEXT I

440 PRINT "h=';H,'b=';B

450 PRINT "positive a sum=';POSASUM,"negative a sum=";NEGASUM

460 PRINT "positive b sum=";POSBSUM,'negative b sum=';NEGBSUM
470 END

14



APPENDIXC

MathienEigenfunctionSohtionmPeriodicin O, suitable for 0 real.

Even solutions about t9 - 0; b - be2m or be2m + 1"

oo

Se2m(h , cos tg) -- _ B2n cos(2n0); _ B2n = 1
I1,-_0 n

OO

Se2m + a(h, cos _) -" _ B2n + 1 cos[(2n + 1)d]; _ B2n + I "- 1
n----O n

Odd solutions about 0 = 0; b = bo2m or bo2m + 1"

OO

So2m(h , cos tg) -- E B2n sin(2n0); E (2n)B2n - 1
n

oo

SO2m + l(h, cos tg) _- E B2n + 1 sin[(2n -4- 1)01; _ (2n -4- 1)B2n + 1 - 1

Corresponding Radial Solutions

For p = iO and for values of the B's and of b corresponding to the angular functions Se, So.

Even functions:

Oo

Je2m(h , cosh p)--,_ E (- 1)n-mB2nJ2n(h cosh p)
rt_O

oo

Je2m + l(h, cosh p) = _ E ( - 1)" - mB2n + 1J2n + l(h cosh p)
n_O

Odd functions:

So2m(h, cosh p) -- _r/2 tanh PE ( - 1)n-m(2n)B2nJ2n(h cosh p)
n----1

oo

Jo2m+l(h, cosh p) =_"2 tanh PE (- 1)n-m(2n + 1)B2n+lJ2n+l(h cosh p)
n_-0
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